Extra Review for Quiz \#3: Simple Machines and Calculating Work

Part 1-Matching: For these questions select the word that matches the definition provided.

1. Choose the word that means: a simple machine consisting of two circular objects of different sizes; the \qquad is the larger of the two circular objects; bicycle
A. wheel and axle
B. inclined plane
B. lever
C. simple machine
C. screw and socket
D. lever
D. gear and axle
2. Choose the word that means: A simple machine that consists of a bar that pivots at a fixed point called a fulcrum.
A. inclined plane
B. pulley
C. lever
A. lever
D. fulcrum
B. pulley
C. inclined plane
D. wedge
3. Choose the word that means: Applying a force to an object causing it to move. The unit for \qquad is the Joule. $(\mathrm{J})=$ force $(\mathrm{N}) \mathrm{x}$ distance (m)
A. power
B. energy
C. exert
D. work

Part 2-Applying Vocabulary: (HINT: make sure to include the words FORCE, DISTANCE, and WORK in your response.) You can refer to the lever lab 1 exit slip!
\qquad Class \qquad Date \qquad
Part 3-Multiple Choice-Simple Machines: For these questions choose the single best answer. Concepts to know for the multiple choice questions.

1. Force
A. What is a force?
B. What is an example of a force that needs to be overcome by a simple machine?
2. The advantage a simple machine provides for its user
A. Make sure you know what ADVANTAGE MEANS
B. Make sure you understand the relationship between force and distance

Sample Question:

Jack is trying to use a lever system to lift a box. Which of the following should Jack do to make the box easier to lift?
A. Jack should move the box on top of the fulcrum
B. Jack should move the fulcrum farther from the box
C. Jack should move the box closer to the edge of the lever
D. Jack should move the fulcrum closer to the box

Part 4-Calculating work: For these questions use the formula Force $=$ Work \mathbf{x} distance to solve the problems below. (You will earn 1 point for showing you work, 1 point for using the ${ }_{(1 \mathrm{pt}}$ correct units, and 1 point for showing your work.)
18. If 3 N of force are applied to a box to move it 73 m , how much work is done on the box?

Your answer \qquad
19. If a 775 N force is required to move a piano a distance of 25 m , how much work is done?

Your answer \qquad
\qquad Class \qquad Date \qquad

Extra Review for Quiz \#3: ANSWER KEY

Part 1-Matching: For these questions select the word that matches the definition provided.
3. Choose the word that means: a simple machine consisting of two circular objects of different sizes; the \qquad is the larger of the two circular objects; bicycle
A. wheel and axle
B. lever
C. screw and socket
D. gear and axle
4. Choose the word that means: A simple machine that consists of a bar that pivots at a fixed point called a fulcrum.
A. inclined plane
B. pulley
C. lever
D. fulcrum
5. Choose the word that means: Applying a force to an object causing it to move. The unit for \qquad is the Joule.
\qquad $(\mathrm{J})=$ force $(\mathrm{N}) \mathrm{x}$ distance (m)
A. power
B. energy
C. exert
D. work

Part 2-Applying Vocabulary: (HINT: make sure to include the words FORCE, DISTANCE, and WORK in your response.)
You can refer to the lever lab 1 exit slip! Answer not provided; students should be able to answer based on feedback from exit slip and the work we did in class.
\qquad Class \qquad Date \qquad
Part 3-Multiple Choice-Simple Machines: For these questions choose the single best answer. Concepts to know for the multiple choice questions. Students should review class work to make sure they understand the concepts and answer these questions on their own.

1. Force
A. What is a force?
B. What is an example of a force that needs to be overcome by a simple machine?
2. The advantage a simple machine provides for its user
A. Make sure you know what ADVANTAGE MEANS
B. Make sure you understand the relationship between force and distance

Sample Question:
Jack is trying to use a lever system to lift a box. Which of the following should Jack do to make the box easier to lift?
A. Jack should move the box on top of the fulcrum
B. Jack should move the fulcrum farther from the box
C. Jack should move the box closer to the edge of the lever
D. Jack should move the fulcrum closer to the box

Part 4-Calculating work: For these questions use the formula Force $=$ Work \mathbf{x} distance to solve the problems below. (You will earn 1 point for showing you work, 1 point for using the correct units, and 1 point for showing your work.) NOTE: numbers on quiz will be simpler and students will be able to use a calculator.
18. If 3 N of force are applied to a box to move it 73 m , how much work is done on the box?
$\mathrm{W}=\mathrm{F} \mathbf{x ~ d}$
3N x 73m = 219 J
Answer: 219 J
19. If a 775 N force is required to move a piano a distance of 25 m , how much work is done?

W=Fid
775N x 25m = 219 J
Answer: 19, 375 J

